خورشید مصنوعی (همجوشی هسته ای) چیست؟

این روزها در مورد خورشید مصنوعی ساخته شده با استفاده از فرآیند همجوشی هسته ای در چین خبرهای زیادی می‌شنویم که خبر جالبی بود. ابررسانای پیشرفته تجربی توکاماک (EAST) یا “خورشید مصنوعی” در چین، در آخرین آزمایش در به رکورد جدیدی دست یافت و این ابررسانای پیشرفته تجربی توکاماک توانسته به مدت ۱۰۵۶ ثانیه در دمای نزدیک به ۷۰ میلیون درجه سانتیگراد فعالیت داشته باشد که این طولانی‌ترین زمان برای این نوع عملیات در جهان است. خورشید واقعی در هسته خود دمایی در حدود ۱۵ میلیون درجه دارد.

خورشید مصنوعی چیست؟

هدف نهایی از ساخت دستگاه خورشید مصنوعی این است که با شبیه‌سازی واکنش‌های طبیعی که در ستارگان رخ می‌دهد، انرژی پاک تقریباً نامحدود تولید کند. در واقع؛ ایجاد همجوشی هسته‌ای مانند خورشید با استفاده از دوتریوم فراوان در دریا برای ارائه یک جریان ثابت از انرژی پاک است. دوتریوم یا هیدروژن سنگین همان عنصر هیدروژن است که علاوه بر پروتون یک نوترون نیز درون هسته آن وجود دارد.

ابررسانای پیشرفته تجربی توکاماک در موسسه فیزیک پلاسمای آکادمی علوم چین در هیفی (Hefei) قرار دارد.

برخلاف سوخت‌های فسیلی مانند زغال‌سنگ، نفت و گاز طبیعی که تهدیدی برای محیط زیست هستند، مواد خام مورد نیاز برای خورشید مصنوعی تقریباً به صورت نامحدود روی زمین موجود هستند. بنابراین، انرژی همجوشی به عنوان انرژی نهایی ایده آل برای آینده بشریت در نظر گرفته می‌شود.

همجوشی هسته‌ای به زبان ساده

شاید در ابتدا عجیب به نظر برسد، اما هر کاری که هم‌اکنون انجام می‌دهید، از جمله تنفس،‌ راه رفتن یا فکر کردن و هر پدیده‌ای که در اطراف خود می‌بینید، به طور غیر مستقیم با فرآیند جوش هسته‌ای رخ داده شده در خورشید، ارتباط دارد. اگر می‌توانستید به درون هستهٔ خورشید سفر کنید، خواهید دید که در آن‌جا اتم‌های هیدروژن با یکدیگر ترکیب شده و منجر به تولید هلیوم می‌شوند.

 

همجوشی هسته‌ای

انرژی تولید شده در خورشید در نتیجه فرآیند همجوشی هسته‌ای است.

 

ارنست رادرفورد، از اولین کسانی بود که آزمایشات مربوط به شناخت ساختار اتم را انجام داد. او در نقل قولی معروف، می‌گوید:

این تصور اشتباه است که می‌توان با تغییر ساختار اتم به انرژی دست یافت.

امروزه‌ ثابت شده که می‌توان با تغییر ساختار اتم از آن انرژی گرفت؛ بنابراین رادرفورد در اشتباه بوده. برای نمونه بمب اتمی ابزاری است که با تغییر دادن هسته اورانیوم یا پلوتونیوم، منجر به تولید انرژی می‌شود. در حالت کلی می‌توان به دو روشِ شکافت و هم‌جوشی،‌ انرژی هسته‌ای تولید کرد. «شکافت هسته‌ای» (Nuclear Fission) روشی محسوب می‌شود که منجر به تولید زباله‌های هسته‌ای خواهد شد. این در حالی است که «همجوشی هسته‌ای» (Nuclear Fusion) روشی پاک‌تر و ایمن‌تر به منظور تولید انرژی هسته‌ای محسوب می‌شود. تصویر زیر شماتیکی از فرآیند همجوشی و شکافت را نشان می‌دهد.

 

همجوشی و شکافت

 

جوش هسته‌ای، واکنشی است که در آن دو یا چند اتم با یکدیگر ترکیب شده و عنصر جدیدی را ایجاد می‌کنند. اختلاف میان جرم اتم‌های اولیه و اتم‌های جدید تولید شده، معادل با انرژی است که می‌تواند تولید شده یا جذب شود. بدیهی است که تفاوت عمده‌ای میان هستهٔ خورشید و یک نیروگاه وجود دارد. بنابراین چطور می‌توان انرژی ناشی از جوش هسته‌ای را در زمین ایجاد کرد؟ تحقیقات نشان داده که روش بهتر استفاده از ایزوتوپ‌های سنگین‌تر هیدروژن است. این ایزوتوپ‌ها به دلیل سنگین‌تر بودن، ناپایدارتر بوده و فرآیند جوش هسته‌ای را می‌توان با انرژی کم‌تری انجام داد.

اتم معمولی هیدروژن دارای یک پروتون و یک الکترون بوده و نوترونی در خود ندارد. این در حالی است که ایزوتوپ‌های تریتیوم و دوتریوم به ترتیب دارای ۲ و ۱ نوترون هستند. بنابراین می‌توان با ترکیب یک اتم از دوتریوم و یک اتم از تریتیوم اتمی پایدار از هلیوم ساخت. در شکل زیر شماتیکی از فرآیند جوش هسته‌ای مذکور نشان داده شده است.

همجوشی هسته ای

 

در فرآیند همجوشی هسته‌ای که در نتیجه ترکیب اتم‌های هیدروژن رخ می‌دهد، اگر جرم واکنش‌دهنده‌ها (اتم تریتیوم + اتم دوتریوم) را با جرم فرآورده‌ها (اتم هلیوم + نوترون) مقایسه کنید، خواهید دید که جرم واکنش‌دهنده‌ها بیشتر است. این اختلاف، برابر با جرمی است که به انرژی تبدیل شده. مقدار جرمِ m از یک ماده به طور مستقیم و در قالب رابطه معروف آلبرت انیشتین یا همان E=mc^2 برابر با انرژی است. برای نمونه طبق این رابطه ۱ گرم اورانیوم معادل با انرژی زیر است:

E=1×10^-3 (3×10^8)^2=9×10^16 J

برای نمونه در بزرگ‌ترین بمب هسته‌ای که اتحاد جماهیر شوروی در سال ۱۹۶۱ آزمایش کرد، تنها ۲.۳ کیلوگرم جرم به انرژی تبدیل شد. این مقدار از انرژی، معادل با انرژی ناشی از انفجار ۱۰۰ مگاتن TNT است.

 

بمب تزار

بمب تزار، قوی‌ترین بمب هسته‌ای است که تاکنون آزمایش شده. این بمب مبتنی بر فرآیند همجوشی هسته‌ای است.

 

بنابراین انرژی آزاد شده در نتیجه فرآیند همجوشی معادل با انرژی ذخیره شده در چندین تن سوخت فسیلی محسوب می‌شود. از این رو در دهه‌های اخیر تلاش بر این بوده تا به جای نیروگاه‌های مبتنی بر فرآیند شکافت هسته‌ای، از نیروگاه‌هایی استفاده شود که انرژی آن‌ها در نتیجه فرآیند همجوشی هسته‌ای تولید می‌شود. همان‌طور که اشاره شد، مبنای ایجاد فرآیند همجوشی هسته‌ای در آزمایشگاه، استفاده از ایزوتوپ‌های هیدروژن است. از نظر تئوری این امر ساده به نظر می‌رسد، اما تاکنون کسی نتوانسته با استفاده از این فرآیند، انرژی در مقیاس صنعتی تولید کند. دلیل این امر، مشکل بودن کنترل انرژی تولید شده است.

به منظور ایجاد فرآیند جوش هسته‌ای، بایستی دواتم هیدروژن را به اندازه کافی به یکدیگر نزدیک کرد. هسته‌اتم دارای بار خالص مثبت است، لذا دو هسته یکدیگر را دفع کرده و نزدیک کردن آن‌ها به هم کار مشکلی خواهد بود. هرچه دو هسته بیشتر به هم نزدیک شوند، انرژی بیشتری به منظور نگه داشتن آن‌ها نیاز است. در ستاره‌هایی همچون خورشید، نیرویی که دواتم را کنار یکدیگر نگه می‌دارد، همان گرانش است.

تاکنون دو روش شناخته شده به منظور ایجاد فرآیند همجوشی هسته‌ای ارائه شده است. در روش اول که تحت عنوان «محصورسازی مغناطیسی» (Magnetic Confinement) شناخته می‌شود، اتم‌های دوتریوم و تریتیوم به اندازه دمای هستهٔ خورشید یعنی حدود ۱۰۰ میلیون درجه سانتی‌گراد داغ می‌شوند. سپس آن‌ها را با استفاده از میدانی مغناطیسی بسیار قوی در مسیری حلقوی تحت عنوان چنبره گیر می‌اندازند. به دستگاهی که این کار را انجام می‌دهد، «توکاماک» (Tokamak) گفته می‌شود. در حال حاضر بزرگ‌ترین توکاماک در آزمایشگاه Joint European Torus) JET)، در جنوب آکسفورد در انگلستان قرار دارد.

 

فرآیند همجوشی

در شکل بالا توکاماک استفاده شده در آزمایشگاه JET نشان داده شده. قسمت سمت راست تصویر، لحظه رخ دادن فرآیند همجوشی را نشان می‌دهد.

 

روش دوم تحت عنوان «محصورسازی لختی» (Inertial Confinement) شناخته می‌شود. در این روش اتم‌ها درون لایه‌هایی به صورت کپسول قرار می‌گیرند. در ابتدا با استفاده از لیزر به لایه بیرونی حرارت منتقل می‌شود. لایه حرارت دیده شده به سمت بیرون پرتاب شده و منجر می‌شود اتم‌های درون آن فشرده شده و فرآیند همجوشی رخ دهد. در حقیقت موج ضربه‌ای ایجاد شده در درون کپسول منجر به فشرده شدن اتم‌ها به یکدیگر و رخ دادن همجوشی می‌شود. نمونه‌ای از محصورسازی لختی در آزمایشگاه ملی برکلی در کالیفرنیا انجام شد. در این روش به‌طور همزمان از ۱۲۹ لیزر به منظور حرارت دهی به کپسول حاوی هیدروژن استفاده شد. تصویر زیر شماتیک فرآیند محصورسازی لختی را نشان می‌دهد.

 

خورشید مصنوعی

فرایند همجوشی

 

مطالب مرتبط

دیدگاهتان را بنویسید

بخش های مورد نیاز علامت گذاری شده اند

نشانی ایمیل منتشر نخواهد شد

نویسنده : آدرس سایت : ایمیل :
کد روبرو را وارد نمایید


0

شبکه های اجتماعی

دانشنامه تخصصی مهندسی ایران را در شبکه های اجتماعی دنبال کنید

0 0

عضویت در خبرنامه

برای دریافت آخرین اخبار در زمینه مهندسی شامل نرم افزارها، استانداردها و آموزش ها به سامانه اطلاع رسانی ما بپیوندید.

بدون پرداخت هزینه، تا هر وقت بخواهید.

تست

همکاران ما

گروه مپنا
گروه مپنا
دانشگاه تهران
دانشگاه تهران
سایپا
سایپا
ایران خودرو
ایران خودرو
شرکت ملی نفت ایران
شرکت ملی نفت ایران
ذوب‌آهن اصفهان
ذوب‌آهن اصفهان
فولاد خوزستان
فولاد خوزستان
درخواست نرم افزار
در صورتی که نیاز به نرم افزار خاصی دارید، با ما تماس بگیرید.
 
            همکاران ما در سریع ترین زمان ممکن پاسخگو شما خواهند بود.